WESTSIDE HIGH SCHOOL

Level Up: RISE to Your Potential

24-25 Lesson Plan Template		Teacher: <mark>COACH BA</mark> I	RROW Subject: <mark>C</mark>	Subject: ON RAMPS STATISTICS	
Week of: <mark>OCTOBER 21</mark>	Monday	Tuesday	Wed./Thurs.	Friday	
TEKS	 4(C) Analyze the distribution characteristics of quantitative data, including determining the possible existence and impact of outliers. 5(A) Determine probabilities, including the use of a two-way table. 3(D) Describe and model variability using population and sampling distributions. 2(D) Distinguish between sample statistics and population parameters. 	4(C) Analyze the distribution characteristics of quantitative data, including determining the possible existence and impact of outliers. 5(A) Determine probabilities, including the use of a two-way table.	 1(C) Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems. 1(G) Display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication. 3(D) Describe and model variability using population and sampling distributions. 5(D) Compare statistical measures such as sample mean and standard deviation from a 	 1(C) Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems. 1(G) Display, explain, or justify mathematical ideas and arguments using precise mathematical language in written or oral communication. 3(D) Describe and model variability using population and sampling distributions. 5(D) Compare statistical measures such as sample mean and standard deviation from a 	

TII

			technology-simulated sampling distribution to the theoretical sampling distribution.	technology-simulated sampling distribution to the theoretical sampling distribution.
Learning Objective	STUDENTS WILL BE ABLE TO IDENTIFY PROPERTIES AND USES OF THE STANDARD NORMAL MODEL AS WELL AS CALCULATE Z-SCORES FOR A GIVEN DATA SET USING TECHNOLOGY.	STUDENTS WILL BE ABLE TO IDENTIFY PROPERTIES AND USES OF THE STANDARD NORMAL MODEL AS WELL AS CALCULATE Z-SCORES FOR A GIVEN DATA SET USING TECHNOLOGY.	STUDENTS WILL BE ABLE TO DIFFERENTIATE BETWEEN A POPULATION AND SAMPLING DISTRIBUTION AND DEMONSTRATE THE CENTRAL LIMIT THEOREM USING TECHNOLOGY.	STUDENTS WILL BE ABLE TO DIFFERENTIATE BETWEEN A POPULATION AND SAMPLING DISTRIBUTION AND DEMONSTRATE THE CENTRAL LIMIT THEOREM USING TECHNOLOGY.
Higher Order Thinking Questions				
Agenda	1. WAG 2. 3.2 RSTUDIO 3. 3.2 RSTUDIO SHINY SIMULATION 4. LAB 3.2	1. LAB 3.2	 UT QUIZ 3 LESSON 3.3 – SAMPLING DISTRIBUTIONS LESSON CHECK 3.3 	 3.3 R STUDIO SHINY APP HOMEWORK 3.3
Demonstration of Learning	Is it possible to find a z-score such that the probability is exactly 1? If so, what is that z-score? If not, why do you think that is?	WRITE THE CONCLUSION, "For professional male soccer players, what height is at the 80th percentile?"	UT QUIZ 3	Keeping the iterations at the highest possible amount (5,000), what sample size creates a sampling distribution which looks the closest to the population distribution? Why do you

Intervention & Extension				
Resources	UT CANVAS/RSTUDIO	UT CANVAS/RSTUDIO	UT CANVAS/RSTUDIO	UT CANVAS/RSTUDIO